1. Geodesic flow on the two-sphere, Part I: Positive measure entropy, Ergod. Th. & Dynam. Sys. 8 (1988), 531-553.

2. Geodesic flow on the two-sphere, Part II: Ergodicity, Dynamical Systems, Springer Lecture Notes in Math., Vol. 1342 (1988), 112-153.

3. Using integrability to produce chaos: billiards with positive entropy, Comm. Math. Phys. 141 (1991), 225-257.

4. Joint with C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic, Commun. Math. Phys. 135 (1991), 267-302.

5. Physical examples of linked twist maps with chaotic dynamics in Twist Mappings and Their Applications, R. McGehee and K. Meyer, Eds, IMA Vol. Math. Appl. (Springer- Verlag), 44 (1993), 95-117.

6. Transverse Homoclinic Connections for Geodesic Flows, Hamiltonian Dynamical Systems: History, Theory and Applications, H.S. Dumas, K.R. Meyer and D.S. Schmidt, Eds, IMA Vol. Math. Appl. (Springer -Verlag), 63, (1995), 115-125.

7. Elliptic islands in generalized Sinai billiards, Ergod. Th. & Dynam. Sys. 16 (1996), 975-1010.

8. Joint with K. Burns, Embedded surfaces with ergodic geodesic flow, Inter. J. of Bifurcation and Chaos Vol. 7, No. 7 (1997), 1509-1527.